Composite learning from adaptive backstepping neural network control

نویسندگان

  • Yongping Pan
  • Tairen Sun
  • Yiqi Liu
  • Haoyong Yu
چکیده

In existing neural network (NN) learning control methods, the trajectory of NN inputs must be recurrent to satisfy a stringent condition termed persistent excitation (PE) so that NN parameter convergence is obtainable. This paper focuses on command-filtered backstepping adaptive control for a class of strict-feedback nonlinear systems with functional uncertainties, where an NN composite learning technique is proposed to guarantee convergence of NN weights to their ideal values without the PE condition. In the NN composite learning, spatially localized NN approximation is employed to handle functional uncertainties, online historical data together with instantaneous data are exploited to generate prediction errors, and both tracking errors and prediction errors are employed to update NN weights. The influence of NN approximation errors on the control performance is also clearly shown. The distinctive feature of the proposed NN composite learning is that NN parameter convergence is guaranteed without the requirement of the trajectory of NN inputs being recurrent. Illustrative results have verified effectiveness and superiority of the proposed method compared with existing NN learning control methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tracking control for nonholonomic mobile robots: Integrating the analog neural network into the backstepping technique

This paper proposes an improved learning algorithm of analog compound orthogonal networks and a novel tracking control approach for nonholonomic mobile robots by integrating the neural network into the backstepping technique. The adaptive control is derived from continuously tuning parameters using the analog neural network in the backstepping control law. The proposed control approach for the ...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

Adaptive Wavelet Neural Network Backstepping Sliding Mode Tracking Control for PMSM Drive System

This paper presents a wavelet neural network backstepping sliding mode controller (WNNBSSM) for permanentmagnet synchronous motor (PMSM) position servo control system. Backstepping sliding mode (BSSM) is utilized to guarantee favorable tracking performance and stability of the whole system, meanwhile, wavelet neural network (WNN) is used for approximating nonlinear uncertainties. The designed c...

متن کامل

Robust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers

In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...

متن کامل

Adaptive Neural Position Tracking Control for Induction Motors via Backstepping

The position tracking control of induction motors with parameter uncertainties and load torque disturbance is addressed. Neural networks are employed to approximate the nonlinearities and an adaptive backstepping technique is used to construct controllers. The proposed adaptive neural controllers guarantee that the tracking error converges into a small neighborhood of the origin. Compared with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 95  شماره 

صفحات  -

تاریخ انتشار 2017